THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH2050B Mathematical Analysis I (Fall 2016)
 Tutorial Questions for 3 Nov

We will adopt the following notations:
Let $A \subseteq \mathbb{R}$ be nonempty, $f: A \rightarrow \mathbb{R}$ be a function, and $c \in \mathbb{R}$ be a cluster point of A.

1. (a) Define $\lim _{x \rightarrow c} f(x)=\infty$.
(b) Show that $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$ but it is not true that $\lim _{x \rightarrow 0} \frac{1}{x}=\infty$. (Of course, the latter limit does not exist in \mathbb{R} either).
2. (a) Define left and right limit of functions.
(b) Show by definition that

$$
\lim _{h \rightarrow 0^{+}} \frac{\sqrt{x+h}-\sqrt{x}}{h}=\frac{1}{2 \sqrt{x}}
$$

where $x>0$.
(c) (Optional) Let $f:[a, b] \rightarrow \mathbb{R}$ be increasing, that is, $f(a) \leq f(x) \leq f(y) \leq f(b)$ for any $a \leq x \leq y \leq b$. Show that $\lim _{x \rightarrow t^{+}} f(x)$ exists in \mathbb{R}, for any $t \in[a, b)$.
3. (a) Define $\lim _{x \rightarrow \infty} f(x)=l \in \mathbb{R}$ and $\lim _{x \rightarrow \infty} f(x)=\infty$.
(b) Show by definition that
i.

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+1}{x^{2}+2}=1
$$

ii.

$$
\lim _{x \rightarrow-\infty}-x^{2}=-\infty
$$

iii.

$$
\lim _{x \rightarrow \infty}(\sqrt{x+1}-\sqrt{x})=0
$$

4. Let $f:[a, b] \rightarrow[s, t], g:[s, t] \rightarrow \mathbb{R}$, and $a<c<b$.
(a) Suppose $\lim _{x \rightarrow c} f(x)=l \in \mathbb{R}$, but $f(x) \neq l$ in some δ_{0}-deleted neighbourhood of c, i.e. there exists $\delta_{0}>0$ such that $f(x) \neq l$ for $0<|x-l|<\delta_{0}$. Assume that $\lim _{y \rightarrow l} g(y)=M \in \mathbb{R}$. Show that $\lim _{x \rightarrow c} g \circ f(x)=M$. You may use the fact that $s \leq l \leq t$.
(b) By constructing an example, show that the condition " $f(x) \neq l$ in some $\delta_{0^{-}}$ deleted neighbourhood of c " cannot be removed.
(c) Alternatively, show that the condition " $f(x) \neq l$ in some δ_{0}-deleted neighbourhood of c " can be replaced by the continuity of g at l, that is, $\lim _{y \rightarrow l} g(y)=g(l)$.
